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Modification of linear response theory for mean-field approximations
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In the framework of statistical descriptions of many particle systems, the influence of mean-field approxi-
mations on the linear response theory is studied. A procedure, analogous to one where no mean-field approxi-
mation is involved, is used in order to determine the first order response of the distribution function to the
perturbation. Subsequently, the effect of the mean-field approximations is examined when formulating Green-
Kubo relations for transport coefficients on the deterministic Liouvillean level and the stochastic Fokker-
Planck level. On the deterministic level, the Vlasov equation is employed to prove the Green-Kubo formula for
the electric conductivity tensor in its well known form. One finds that the interpretation of the Green-Kubo
formula is changed when applying Vlasov’'s mean-field approximation. On the stochastic level, the Gaussian
approximation of the bead-spring model for dilute polymer solutions, including hydrodynamic interaction, is
considered in homogeneous shear flow. The commonly known Green-Kubo formula for the viscosity is found
to be invalid in the Gaussian approximation, and the appropriate modification to the formula is given.
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I. INTRODUCTION partial differential equation that governs the time evolution
of the distribution function is of the general form
The complexity of many particle systems is frequently the
motivation for introducing mean-field approximations so as b
to simplify and solve the complicated equations of motion or S PG =(L+L)p(x.),
the time evolution equation for the probability distribution

function in configuration space. In this paper, we exclusivelyyhereL andL" are differential operators in the phase space
concentrate on the statistical description and not on thgariables x, respectively representing a time independent
trajectory-wise formulation. One is often interested in theequilibrium operator and a small time dependent perturbation
linear response of such a system to a small external influof the system.

ence, starting from the equilibrium situation. The usual pro-  There are several ways of introducing mean-field approxi-
cedure is to calculate the first order deviation of the distribumations into the operatois andLP. They all have in com-
tion function from its equilibrium form. This can easily be mon that the resulting operators, denotedbyandM P (for
done if the statistical model equation is linear in the distri'mean f|e|d’ contain averages with respect to the distribution

bution function, as is the case, for example, in the Liouvillefynctionp(x,t). The mean-field analog to E(.1) is written
equation. However, if the statistical model equation is notyg follows:

linear in the distribution function, one encounters a remark-

able change on which we will focus our attention. Here we 9

only look at the case where such a nonlinearity is introduced e p(x,t)=(M+MP)p(x,t). (2.2
by the application of certain mean-field approximations.

These approximations are found to affect the commonl
known Green-Kubo relationd,2], which say that the space

(time) integral of the flux-flux equilibrium correlation func-

tion divided by kgT gives the corresponding steady-state

(2.1

¥r'he Viasov equatiof3], which is frequently used in plasma
physics, is clearly the prototype example for a mean-field
approximation to the Liouville equation. For the present dis-

transport coefficient. Before studying on an abstract level th&uSston, it suffices to consider the simplest case with only

influence of mean-field approximations on linear responsé‘)lne,[Spetc',?S l(_)lf\l_tpafmcles with lmats_m ";‘”dd.‘]f]f‘a@? in th_e f
theory in general and on Green-Kubo relations in particulare ectrostauc imit. The generalization to difierént Species o

both deterministic and stochastic examples shall briefly b@?rt!cle? 'i obvvllous,,and IS °'T"“et‘?' n th;ff pr)]aper fotrhr(iasons
presented, with their main points outlined in order to have pt simplicity. Viasov's approximation, which says that any

concrete idea in mind when proceeding to the more gener o] partlc_les are uncgrrelated, leads to a partial differential
sec. Il equation in the coordinate, and the momenturp, for the

one-particle distribution functiorft}(r,,p;,t). This equa-
tion is of the form(2.2), with the following assignments for
[l. PROTOTYPE EXAMPLES M andMP, if the interaction of the particles is only electro-

The linear response to an external influence is studied oﬁtat'c In ongin:
the level of the distribution function. The subsequent sec- o, o o P
tions are valid both for the Liouville equation with reversible M=—| 2. +QEM(ry)- o (2.3

dynamics and the dissipative Fokker-Planck equation. The m Jry

1063-651X/96/543)/25265)/$10.00 54 2526 © 1996 The American Physical Society



54 MODIFICATION OF LINEAR RESPONSE THEORY FOR ... 2527

and defined5]. It is this process which we will study below. The
Gaussian approximation leads to a mean-field-type Fokker-

P ox d Planck equation with
MP=—qE™{(ry) - -, (2.9
P1 14 o
M= on, a0 (1 ¢Q)ae,

kgT a)
RIS

1 9 d T
T, 90 —= Q) |-Q %@t-Q (2.9

with the smoothed internal electric field

— J — J
int = _ __ int —_ _ J
E™(ry) ﬂrld) (ry): &Fl(N 1)f drodp; Q
X M| ry =1, F(r,,p,,0). (25 and
Here, ¢ denotes the Coulomb potential of a point particle, MP=— 2 © Q. (2.9
andE®™is the external electric perturbation field. The phase 9Q

space integral of¥}(r,,p;,t) is normalized to unity. As a

consequence of the Vlasov approximation, the sum of thtz,l—he vectorey is the mean value an@, is the covariance

external and arinternal electric field occurs in the time- Matrix of the Gaussian distribution function as obtained from
the first and second moment equations. The second of the

i i {1}
evo!u_t|0n equation forf_ [4]. Thus, Eqs.(2.3)_ an(_j (2_'5) two averages if2.8) can be interpreted as accounting for the
exhibit the physics behind the Vlasov approximation: every, ; X o .
hydrodynamic fluctuations, because it is absent in the preav-

particle “see;” all the others as a continuum rather than aséraging and the consistent averaging method. Below, it is

separate particles. , called the “fluctuation term,” and will be of major impor-
The prototype example on the stochastic Fokker-PIancI,&j‘nce

level is “.*ke“ to be the Gaussian approxnn_aiﬂﬁn?] toa Eqﬁations(Z.S)—(Z.S) and Eqgs.(2.8) and (2.9 constitute

ks)i?j%?-fr?:Il%srgo\?v%ee]r;otrh?a"ufl przgmgréglgg% r(]:iS.bW?)rflont_w Othe two prototype examples of mean-field theories, for which

poly y onYy tWoye will study the linear response theory in Sec. Ill, and the

beads connected by a spring, so-called dumbbells. On e rmulation of Green-Kubo relations in Sec. 1V

count of the nonlinearity introduced by the hydrodynamic .

interaction[5,8], the Fokker-Planck equation for the connec-

tor vectorQ of the two beads cannot be solved analytically Il. GENERALIZED LINEAR RESPONSE THEORY

in nonequilibrium situations. When concentrating on the case The linear response of the system to a small perturbation
of homogeneous, incompressible shear flow of the solvents getermined by means of E€.1) or (2.2), respectively.
i.e., v(r)=r-r=(vy,0,0), wherey denotes the shear rate, The first order contributions resulting from the correspond-
and the Fokker-Planck equation for the connector vector is ohg partial differential equation is used to find the first order
the form (2.1). The assignments fdr andL” are given as  deviationp,(x,t) of the distribution function from its equi-
follows, if the connector vector force law is of the Hookean |iprium value PeqX). However, there is a fundamental dif-
form F¢(Q)=HQ: ference in this procedure depending on whether or not mean-
field approximations are involved. Whereas the operator
included by definition no effect of the perturbation, this is
not the case for the mean-field approximatieh because
there might be additional terms due to the first order of the
and distribution function in the averages containedMn This is
the source of the modification of linear response theory dis-
9 cussed in this paper. The transition to the mean-field theory
LP=—— kQ. (2.7 can thus be written as

29

7,

. ksT
20 0Q

d
Q+ o E) (2.6

[1-2Q(Q) ]

o N L—M:=Mg+M+--- (3.2

{ denotes the frictional coefficient of the beads,the hy-
drodynamic interaction tensb,8], Ay :=¢/(4H) the fun-  and
damental time constankg the Boltzmann constant, anfd
the absolute temperature. The convention for the differential LP=MPi=MT+- -, (3.2
operators is such that they operate on every function to the ) ) o
right of them, the distribution function if2.1) included, if ~ Where the right side of the definitions {8.1) and (3.2 are
not indicated otherwise by appropriate brackets. the Taylor expansions of the operators with respect to the

One can try to achieve tractable equations by the applics€Xternal perturbation up to the first order. The first order
tion of mean field approximations. In order to improve thedependenceM; of M results from the dependence on the
prea_veragindg] and the consistent averaging meﬂﬂ[d_@], first order contribution to the distribution function, and is
both of which replace the hydrodynamic interaction tensottherefore only implicitly time dependent, whereas the first
by averages, the Gaussian approximation has been intrévrder dependencd{ is directly due to the operatdr,
duced. The postulated Gaussian property of the probabilitieading to an explicit time dependence M} . The latter
distribution leads to closed first and second moment equasontains at most averages with respect to the equilibrium
tions. Furthermore, an approximate stochastic process can logstribution function, because second and higher order ef-



2528 MARKUS HUTTER AND HANS CHRISTIAN OTTINGER 54

),

(3.6

fects are not included. After the mean-field approximation o [Mitabr Mf]peq(x)
we have a grouping into zeroth and first order operators. TheA(B)®¥= f dt< < B(xt),(

equilibrium operator is now given bW, whereas the first 0 PedX)
order operator consists of two partd,; and Mf. It is im-
portant to note that the first part stems from the original
equilibrium operatol.

Let us comment on expressiof&5) and(3.6). If no mean-
The equation for the first order contributions resultingZE:gr:gptrﬁglg]a;g?df Eglg(rjifstl;ﬂ trhees megg\(/aelzleqiusagggeictm—
from (2.2) can be transformed into an integral equation. ' P L ' P Y, '

Without loss of generality one may assume the time depenEurthermore, the_ gp_plicati_on_of _mean-fie_ld approximations
dence of the perturbation operatd¥ to be of the Heaviside may alter th_e gqumbnum d|str|bgt|on functiqry{(x) as we_II
form (step function. This leads to a Heaviside time depen- as the equilibrium ope(ator,_wmch propagates the conflgura—
dence ofM? . and therefore for the deviation from the equi- tions between the distinct times in the correlation function,
librium distribution function one finds frz_)m L to M. In Sec. IV we proceed to the application of
this linear response theory to the two prototype examples,
. where we will try to establish Green-Kubo relations.
pl(xvt):J;)dsexq[t_s]MO){[Ml(s)—i_Mlp]peq(x)}
IV. APPLICATIONS

for t=0, (3.3 A. Liouvillean level

When studying the influence of an external electric field
which can be verified by differentiation. Even though on a group of charged particles, it is natural to look first for
M,(s) depends om;(Xx,s), and(3.3) is thus not a solution the linear response of the current density. Because the calcu-
for p;(x,t), this form is sufficient for our purpose. It is now lation of the ensemble average of the current density
used to determine the deviation of an arbitrary, not explicitlyj(r;r,,p;, ... fn,Pn) IS found to require only the one-
time dependent functioB(x), defined on the phase space, particle distribution function3,14], a linear response theory
from its equilibrium value: of only the latter suffices. The current density for the

N-particle system to be used with the one-particle distribu-
. tion function then has the form j(r;rq,pq)
A<B>(t)=<B>P<U_<B>Peq%f dxpy(x,1)B(x). (3.4 =gN(ps/m)8(r—r4). The factorN, which represents the
sum over all particles, originates from the formulation based
Using Eq. (3.3), the phase space integral {8.4) can be on theoneparticle distribution function, and will also appear
replaced by a covariance or correlation function, denoted byn the following formulas. We now concentrate on the ther-
{F (%), 9(Xe) Y= {F(x)g(xs)) — (F(x)){g(xs)), in both the modynamic limit, meaning that the particle number and the
Liouvillean and Fokker-Planck casEkl]. The result for the  volume tend to infinity in such a way that the particle density
linear response can then be written in the following form: remains constant. In this case, the symmetry of the system
demands that in the zeroth order of the perturbation the in-
A(B)(t) ternal smoothed electric fiel&,g“(rl), vanishes, and thus the

b proper equilibrium distribution function is found fro2.3)
t [M1(S) +M7]pedX) to be[3]

= | ds| { B(xy), X=X .
0 Ped(X) */ [ eq

1 p3
(3.9 f{e}q}(rlapl)zNeX[( “eT ﬁ> , 4.1

The long time limit qf th_e linear response has to be studiedynere A7 is a normalization constankg is the Boltzmann
separately on the Liouvillean and Fokker-Planck levels. Incongstant, andr is the absolute temperature. Notice that the
both cases the long time behavior of the equilibrium corre+qyiliprium distribution function(4.1) does not contain the

lation function is of primary interest. On the Liouvillean jyteraction between the particles that would have occurred in
level we assume that the ergodicity holds whether the systegq equilibrium distribution function of the unapproximated
considered contains mean-field approximations or not. Undgfq ville equation in the full phase space.

this assumption, the correlation function(®5) is only non- If a space dependent external electric fi®@8(r) is
vanishing whers approaches [12]. Qn_the Fokker—_PIanck switched on at timet=0, and the notatiorx=(r;,p;) is
level it can be shown that the equilibrium correlation func-\seq the linear response of the electric current density can
tion has an exponential decay for large time differenceg)q \vritten according to E¢3.5) as follows:

|t—s| if the diffusion tensor is positive definifel3], where
again the system considered may or may not contain mean- _ 1t

field approximations. In the long time limit a stationary so- A(j)(r,t)=———=[ ds

lution is therefore approached in both cases. IMn(s), as NksT Jo

contained in Eq(3.5), the functionp,(x,s) is replaced by ) . o

the stationary deviatiop}®(x), then an appropriate variable X f AT (7%, 1 (T:Xs) Yeq [ES(T) + ET(T,9)],
transformation and the time translation invariance of the

equilibrium correlation function lead to 4.2
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where an additionab function and the integration over 1 © R
have been introduced in order to remove the electric fields 7°= TJ dt{(Ty(Q0), %y(Q0))eq
from the correlation function. Attention should be paid to the pre o

second of the two electric fields that appeaf4r®), the first

2 ro
orderEY" (7,s) of the smoothed internal field. Its presence is — 'ZH f dt«}gy(Qt)aQOQO))eq:{ f dQ ps(Q)
the main effect of Vlasov's mean-field approximation. Be- ykgTJo
cause the internal smoothed electric field vanishes at equilib- T
rium, the sum of the two electric fields i#.2) can be con- x( iﬂ(Q)}Q) ] (4.5
sidered as the total field in the plasma, although only up to dQ ' '

first order. Since Ohm'’s law, which defines the electric con-

ductivity tensor, gives a relation between the electric currenfhe second of the two terms on the right hand side stems

density and theotal electric field[15], a comparison with from the fluctuation term, and is therefore an immediate con-

(4.2) leads to the following identification for the nonlocal sequence of the Gaussian approximation. It is not present in

and noninstantaneous conductivity tensor: the preaveraging and the consistent averaging procedure,
1 both of which give the same viscosity when calculated by

- [V [y means of(4.5). The additional first order fluctuation term in
or-rt=s) NkBT«](r "%i-9:1(0X0)eq, (43 Eq. (4.5 changes the viscosity for the Gaussian approxima-

where the translation invariance of the equilibrium correla-tion [16]. This discrepancy can also be observed when using
q an equivalent procedure; that is, when solving the closed

tion fun.ct|o_n has peen _employed. Although no space-iMeg:ond moment equations in all three cases in the presence of
integration is contained if¥.3), we shall refer to the latter as flow and using7(¥)=n,H(Q,Q,)/ ¥ to calculate the vis
=n, Qy ;

the Green-Kubo relation. cosity.

In this example, the mean-field approximation does not One may considef4.5) as a generalization of the Green-

change the formal appearance of the Green-Kubo formu"’j}(ubo formula for the viscosity to the Gaussian approxima-

However, it changes the meaning of the conductivity t(_anso[ion. One has to remember, however, that this Green-Kubo

the unapproximatedN-particle Liouville equation, the
Green-Kubo formula would have been identical(403) ex-
cept for the factor of M, the equilibrium operator, and the

cient in purely equilibrium dynamical terms. If one is inter-
ested in the determination of the zero-shear-rate viscosity,
one is forced to calculate at least one first order quantity and

equilibrium distribution function. But the relation defining can only choose which one is preferable, the shear stress or
this nonlocal and noninstantaneous conductivity tenSO{he fluctuation term '

would have been a relation between the current density and ge 5 156 the formulation of the Gaussian approximation

:22 %f;ﬂ%lgli?tg%:r'idlsvr\]lly_’r\r']v:'ggoci%esé?eo;nc_?(r&%zp?er;gtitg for stochastic processes iS not unique, one can try to find a
: : : . - .process that fulfills the Green-Kubo relation in the usual

seems therefore to be more meaningful in connection W'tiorm, i.e.. Eq.(4.5), without the fluctuation term. We were

;c_he V.II?SOV e?_uatlon rather than with the unapproximate ble to establish such a solution for dumbbells but not for
iouville equation. longer chains.

B. Fokker-Planck level

. . . V. CONCLUSIONS
The general linear response theory is now applied to the

Gaussian approximation of the dilute polymer solution The previous two examples have shown that the applica-
model. The equilibrium distribution function for the connec- tion of mean-field approximations can have two distinct ef-
tor vectorQ is found to have a mean value zero and covari-fects on Green-Kubo relations. Either the relation experi-

ance matrix kgT/H)1, i.e., ences only minor formal changes, with mostly the
interpretation of the transport coefficient being modified, as
D q(Q)=Nexp< _ 1 le) (4.4) shown in the Vlasov example, or the relation has to be gen-
© 2 kgT ' ' eralized in order not to change the meaning of the transport

. L . . , coefficient. This has been observed in the polymer solution
where\'is a normalization constant. Equatiohd) is valid  o4e| we therefore conclude that the commonly known

for the unapproximated model as well as for the Gaussial; een-kubo relations. which say that the spatiene) inte-
approximated model. This can be verified by means of Edsyrg) of the flux-flux equilibrium correlation function divided
(2.6) or (2.8), respectively, where one should notice that they,, | T gives the corresponding steady-state transport coef-
fluctuation term in(2.8) vanishes at equilibrium. The first ficient, cannot be blindly applied when mean-field approxi-

property one is interested in when imposing the shear flovg,4tions are involved. Since the above examples have shown
v(r)=(»y,0,0) on a polymer solution is the response of they,; g easy recipe for the derivation of Green-Kubo rela-

polymer contribution to the stress tensor and especially to thg, s can be given, it seems to be necessary to derive the
shear stress, which for the Hookean dumbbellpmodel and gyodified Green-Kubo relation separately for each problem

polymer concentrationn,, is of the form (7, (Q))=  considered, starting from E¢3.5) or (3.6).

—npH(Q,Q,) [8], vanishing at equilibrium. With the defi-
nition 7°(7):=—(7%,(Q))/y [8] for the polymer contribu-

tion to the viscosity and with the identification
B(x)= Agy(Qt) one finds, from(3.6), We are grateful to Martin Melchior for many discussions.
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