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In the framework of statistical descriptions of many particle systems, the influence of mean-field approxi-
mations on the linear response theory is studied. A procedure, analogous to one where no mean-field approxi-
mation is involved, is used in order to determine the first order response of the distribution function to the
perturbation. Subsequently, the effect of the mean-field approximations is examined when formulating Green-
Kubo relations for transport coefficients on the deterministic Liouvillean level and the stochastic Fokker-
Planck level. On the deterministic level, the Vlasov equation is employed to prove the Green-Kubo formula for
the electric conductivity tensor in its well known form. One finds that the interpretation of the Green-Kubo
formula is changed when applying Vlasov’s mean-field approximation. On the stochastic level, the Gaussian
approximation of the bead-spring model for dilute polymer solutions, including hydrodynamic interaction, is
considered in homogeneous shear flow. The commonly known Green-Kubo formula for the viscosity is found
to be invalid in the Gaussian approximation, and the appropriate modification to the formula is given.
@S1063-651X~96!13209-8#

PACS number~s!: 05.70.Ln, 05.20.2y, 05.60.1w

I. INTRODUCTION

The complexity of many particle systems is frequently the
motivation for introducing mean-field approximations so as
to simplify and solve the complicated equations of motion or
the time evolution equation for the probability distribution
function in configuration space. In this paper, we exclusively
concentrate on the statistical description and not on the
trajectory-wise formulation. One is often interested in the
linear response of such a system to a small external influ-
ence, starting from the equilibrium situation. The usual pro-
cedure is to calculate the first order deviation of the distribu-
tion function from its equilibrium form. This can easily be
done if the statistical model equation is linear in the distri-
bution function, as is the case, for example, in the Liouville
equation. However, if the statistical model equation is not
linear in the distribution function, one encounters a remark-
able change on which we will focus our attention. Here we
only look at the case where such a nonlinearity is introduced
by the application of certain mean-field approximations.
These approximations are found to affect the commonly
known Green-Kubo relations@1,2#, which say that the space
~time! integral of the flux-flux equilibrium correlation func-
tion divided by kBT gives the corresponding steady-state
transport coefficient. Before studying on an abstract level the
influence of mean-field approximations on linear response
theory in general and on Green-Kubo relations in particular,
both deterministic and stochastic examples shall briefly be
presented, with their main points outlined in order to have a
concrete idea in mind when proceeding to the more general
Sec. III.

II. PROTOTYPE EXAMPLES

The linear response to an external influence is studied on
the level of the distribution function. The subsequent sec-
tions are valid both for the Liouville equation with reversible
dynamics and the dissipative Fokker-Planck equation. The

partial differential equation that governs the time evolution
of the distribution function is of the general form

]

]t
p~x,t !5~L1LP!p~x,t !, ~2.1!

whereL andLP are differential operators in the phase space
variables x, respectively representing a time independent
equilibrium operator and a small time dependent perturbation
of the system.

There are several ways of introducing mean-field approxi-
mations into the operatorsL andLP. They all have in com-
mon that the resulting operators, denoted byM andMP ~for
mean field!, contain averages with respect to the distribution
functionp(x,t). The mean-field analog to Eq.~2.1! is written
as follows:

]

]t
p~x,t !5~M1MP!p~x,t !. ~2.2!

The Vlasov equation@3#, which is frequently used in plasma
physics, is clearly the prototype example for a mean-field
approximation to the Liouville equation. For the present dis-
cussion, it suffices to consider the simplest case with only
one species ofN particles with massm and chargeq in the
electrostatic limit. The generalization to different species of
particles is obvious, and is omitted in this paper for reasons
of simplicity. Vlasov’s approximation, which says that any
two particles are uncorrelated, leads to a partial differential
equation in the coordinater1 and the momentump1 for the
one-particle distribution functionf $1%(r1,p1 ,t). This equa-
tion is of the form~2.2!, with the following assignments for
M andMP, if the interaction of the particles is only electro-
static in origin:

M52Fp1m •

]

]r1
1qĒint~r1!•

]

]p1
G ~2.3!
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and

MP52qEext~r1!•
]

]p1
, ~2.4!

with the smoothed internal electric field

Ēint~r1![2
]

]r1
f̄ int~r1!:52

]

]r1
~N21!E dr2dp2

3fcoul~ ur12r2u! f $1%~r2 ,p2 ,t !. ~2.5!

Here,fcoul denotes the Coulomb potential of a point particle,
andEext is the external electric perturbation field. The phase
space integral off $1%(r1 ,p1 ,t) is normalized to unity. As a
consequence of the Vlasov approximation, the sum of the
external and aninternal electric field occurs in the time-
evolution equation forf $1% @4#. Thus, Eqs.~2.3! and ~2.5!
exhibit the physics behind the Vlasov approximation: every
particle ‘‘sees’’ all the others as a continuum rather than as
separate particles.

The prototype example on the stochastic Fokker-Planck
level is taken to be the Gaussian approximation@5–7# to a
bead-spring model@8# for dilute polymer solutions. We con-
sider the case where the polymer is modeled by only two
beads connected by a spring, so-called dumbbells. On ac-
count of the nonlinearity introduced by the hydrodynamic
interaction@5,8#, the Fokker-Planck equation for the connec-
tor vectorQ of the two beads cannot be solved analytically
in nonequilibrium situations. When concentrating on the case
of homogeneous, incompressible shear flow of the solvent,
i.e., v(r )5k•r5(ġy,0,0), whereġ denotes the shear rate,
and the Fokker-Planck equation for the connector vector is of
the form ~2.1!. The assignments forL andLP are given as
follows, if the connector vector force law is of the Hookean
form Fc(Q)5HQ:

L5
1

2lH

]

]Q
•@12zV~Q!#•SQ1

kBT

H

]

]QD ~2.6!

and

LP52
]

]Q
•k•Q. ~2.7!

z denotes the frictional coefficient of the beads,V the hy-
drodynamic interaction tensor@5,8#, lH :5z/(4H) the fun-
damental time constant,kB the Boltzmann constant, andT
the absolute temperature. The convention for the differential
operators is such that they operate on every function to the
right of them, the distribution function in~2.1! included, if
not indicated otherwise by appropriate brackets.

One can try to achieve tractable equations by the applica-
tion of mean field approximations. In order to improve the
preaveraging@9# and the consistent averaging method@10#,
both of which replace the hydrodynamic interaction tensor
by averages, the Gaussian approximation has been intro-
duced. The postulated Gaussian property of the probability
distribution leads to closed first and second moment equa-
tions. Furthermore, an approximate stochastic process can be

defined@5#. It is this process which we will study below. The
Gaussian approximation leads to a mean-field-type Fokker-
Planck equation with

M5
1

2lH

]

]Q
•^12zV~Q!&a t,Q t

•SQ1
kBT

H

]

]QD
2

1

2lH

]

]Q
• K F ]

]Q
zV~Q!G•QL

a t,Q t

T

•Q ~2.8!

and

MP52
]

]Q
•k•Q. ~2.9!

The vectorat is the mean value andQt is the covariance
matrix of the Gaussian distribution function as obtained from
the first and second moment equations. The second of the
two averages in~2.8! can be interpreted as accounting for the
hydrodynamic fluctuations, because it is absent in the preav-
eraging and the consistent averaging method. Below, it is
called the ‘‘fluctuation term,’’ and will be of major impor-
tance.

Equations~2.3!–~2.5! and Eqs.~2.8! and ~2.9! constitute
the two prototype examples of mean-field theories, for which
we will study the linear response theory in Sec. III, and the
formulation of Green-Kubo relations in Sec. IV.

III. GENERALIZED LINEAR RESPONSE THEORY

The linear response of the system to a small perturbation
is determined by means of Eq.~2.1! or ~2.2!, respectively.
The first order contributions resulting from the correspond-
ing partial differential equation is used to find the first order
deviationp1(x,t) of the distribution function from its equi-
librium value peq(x). However, there is a fundamental dif-
ference in this procedure depending on whether or not mean-
field approximations are involved. Whereas the operatorL
included by definition no effect of the perturbation, this is
not the case for the mean-field approximationM , because
there might be additional terms due to the first order of the
distribution function in the averages contained inM . This is
the source of the modification of linear response theory dis-
cussed in this paper. The transition to the mean-field theory
can thus be written as

L→M :5M01M11••• ~3.1!

and

LP→MP:5M1
P1•••, ~3.2!

where the right side of the definitions in~3.1! and ~3.2! are
the Taylor expansions of the operators with respect to the
external perturbation up to the first order. The first order
dependenceM1 of M results from the dependence on the
first order contribution to the distribution function, and is
therefore only implicitly time dependent, whereas the first
order dependenceM1

P is directly due to the operatorL1
P ,

leading to an explicit time dependence ofM1
P . The latter

contains at most averages with respect to the equilibrium
distribution function, because second and higher order ef-
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fects are not included. After the mean-field approximation
we have a grouping into zeroth and first order operators. The
equilibrium operator is now given byM0, whereas the first
order operator consists of two parts,M1 andM1

P . It is im-
portant to note that the first part stems from the original
equilibrium operatorL.

The equation for the first order contributions resulting
from ~2.2! can be transformed into an integral equation.
Without loss of generality one may assume the time depen-
dence of the perturbation operatorLP to be of the Heaviside
form ~step function!. This leads to a Heaviside time depen-
dence ofM1

P , and therefore for the deviation from the equi-
librium distribution function one finds

p1~x,t !5E
0

t

dsexp~@ t2s#M0!$@M1~s!1M1
P#peq~x!%

for t>0, ~3.3!

which can be verified by differentiation. Even though
M1(s) depends onp1(x,s), and ~3.3! is thus not a solution
for p1(x,t), this form is sufficient for our purpose. It is now
used to determine the deviation of an arbitrary, not explicitly
time dependent functionB(x), defined on the phase space,
from its equilibrium value:

D^B&~ t ![^B&p~ t !2^B&peq'E dx p1~x,t !B~x!. ~3.4!

Using Eq. ~3.3!, the phase space integral in~3.4! can be
replaced by a covariance or correlation function, denoted by
k^ f (xt),g(xs)&l5^ f (xt)g(xs)&2^ f (xt)&^g(xs)&, in both the
Liouvillean and Fokker-Planck cases@11#. The result for the
linear response can then be written in the following form:

D^B&~ t !

5E
0

t

dsK K B~xt!,S @M1~s!1M1
P#peq~x!

peq~x!
Ux5xsD L L

eq

.

~3.5!

The long time limit of the linear response has to be studied
separately on the Liouvillean and Fokker-Planck levels. In
both cases the long time behavior of the equilibrium corre-
lation function is of primary interest. On the Liouvillean
level we assume that the ergodicity holds whether the system
considered contains mean-field approximations or not. Under
this assumption, the correlation function in~3.5! is only non-
vanishing whens approachest @12#. On the Fokker-Planck
level it can be shown that the equilibrium correlation func-
tion has an exponential decay for large time differences
ut2su if the diffusion tensor is positive definite@13#, where
again the system considered may or may not contain mean-
field approximations. In the long time limit a stationary so-
lution is therefore approached in both cases. If inM1(s), as
contained in Eq.~3.5!, the functionp1(x,s) is replaced by
the stationary deviationp1

stat(x), then an appropriate variable
transformation and the time translation invariance of the
equilibrium correlation function lead to

D^B&stat5E
0

`

dtK K B~xt!,S @M1
stat1M1

P#peq~x!

peq~x!
Ux5x0D L L

eq

.

~3.6!

Let us comment on expressions~3.5! and ~3.6!. If no mean-
field approximation is included in the model equation con-
sidered, the operatorM1(s) or M1

stat, respectively, is absent.
Furthermore, the application of mean-field approximations
may alter the equilibrium distribution functionpeq(x) as well
as the equilibrium operator, which propagates the configura-
tions between the distinct times in the correlation function,
from L to M0. In Sec. IV we proceed to the application of
this linear response theory to the two prototype examples,
where we will try to establish Green-Kubo relations.

IV. APPLICATIONS

A. Liouvillean level

When studying the influence of an external electric field
on a group of charged particles, it is natural to look first for
the linear response of the current density. Because the calcu-
lation of the ensemble average of the current density
ĵ (r ;r1 ,p1 , . . . ,rN ,pN) is found to require only the one-
particle distribution function@3,14#, a linear response theory
of only the latter suffices. The current density for the
N-particle system to be used with the one-particle distribu-
tion function then has the form ĵ (r ;r1 ,p1)
5qN(p1 /m)d(r2r1). The factorN, which represents the
sum over all particles, originates from the formulation based
on theone-particle distribution function, and will also appear
in the following formulas. We now concentrate on the ther-
modynamic limit, meaning that the particle number and the
volume tend to infinity in such a way that the particle density
remains constant. In this case, the symmetry of the system
demands that in the zeroth order of the perturbation the in-
ternal smoothed electric field,Ē0

int(r1), vanishes, and thus the
proper equilibrium distribution function is found from~2.3!
to be @3#

f eq
$1%~r1 ,p1!5NexpS 2

1

kBT

p1
2

2mD , ~4.1!

whereN is a normalization constant,kB is the Boltzmann
constant, andT is the absolute temperature. Notice that the
equilibrium distribution function~4.1! does not contain the
interaction between the particles that would have occurred in
the equilibrium distribution function of the unapproximated
Liouville equation in the full phase space.

If a space dependent external electric fieldEext(r ) is
switched on at timet50, and the notationx5(r1 ,p1) is
used, the linear response of the electric current density can
be written according to Eq.~3.5! as follows:

D^ ĵ &~r ,t !5
1

NkBT
E
0

t

ds

3E dr̃ k^ ĵ ~t;xt!, ĵ ~ r̃ ;xs!&leq•@Eext~ r̃ !1Ē1
int~ r̃ ,s!#,

~4.2!
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where an additionald function and the integration overr̃
have been introduced in order to remove the electric fields
from the correlation function. Attention should be paid to the
second of the two electric fields that appear in~4.2!, the first
orderĒ1

int ( r̃ ,s) of the smoothed internal field. Its presence is
the main effect of Vlasov’s mean-field approximation. Be-
cause the internal smoothed electric field vanishes at equilib-
rium, the sum of the two electric fields in~4.2! can be con-
sidered as the total field in the plasma, although only up to
first order. Since Ohm’s law, which defines the electric con-
ductivity tensor, gives a relation between the electric current
density and thetotal electric field @15#, a comparison with
~4.2! leads to the following identification for the nonlocal
and noninstantaneous conductivity tensor:

s~r2 r̃ ,t2s!5
1

NkBT
Š^ ĵ ~r2 r̃ ;xt2s!, ĵ ~0;x0!&‹eq, ~4.3!

where the translation invariance of the equilibrium correla-
tion function has been employed. Although no space-time
integration is contained in~4.3!, we shall refer to the latter as
the Green-Kubo relation.

In this example, the mean-field approximation does not
change the formal appearance of the Green-Kubo formula.
However, it changes the meaning of the conductivity tensor
as follows. If the linear response theory had been applied to
the unapproximatedN-particle Liouville equation, the
Green-Kubo formula would have been identical to~4.3! ex-
cept for the factor of 1/N, the equilibrium operator, and the
equilibrium distribution function. But the relation defining
this nonlocal and noninstantaneous conductivity tensor
would have been a relation between the current density and
theexternalelectric field only, which does not correspond to
the meaning of Ohm’s law. The above Green-Kubo relation
seems therefore to be more meaningful in connection with
the Vlasov equation rather than with the unapproximated
Liouville equation.

B. Fokker-Planck level

The general linear response theory is now applied to the
Gaussian approximation of the dilute polymer solution
model. The equilibrium distribution function for the connec-
tor vectorQ is found to have a mean value zero and covari-
ance matrix (kBT/H)1, i.e.,

peq~Q!5NexpS 2
1

2

H

kBT
Q2D , ~4.4!

whereN is a normalization constant. Equation~4.4! is valid
for the unapproximated model as well as for the Gaussian
approximated model. This can be verified by means of Eqs.
~2.6! or ~2.8!, respectively, where one should notice that the
fluctuation term in~2.8! vanishes at equilibrium. The first
property one is interested in when imposing the shear flow
v(r )5(ġy,0,0) on a polymer solution is the response of the
polymer contribution to the stress tensor and especially to the
shear stress, which for the Hookean dumbbell model and a
polymer concentrationnp is of the form ^t̂xy

p (Q)&5
2npH^QxQy& @8#, vanishing at equilibrium. With the defi-
nition hp(ġ):52^t̂xy

p (Q)&/ġ @8# for the polymer contribu-
tion to the viscosity and with the identification
B(xt)5 t̂xy

p (Qt) one finds, from~3.6!,

hp5
1

npkBT
E
0

`

dtk^t̂xy
p ~Qt!,t̂xy

p ~Q0!&leq

2
2H2

ġkBT
E
0

`

dtŠ^t̂xy
p ~Qt!,Q0Q0&‹eq:H E dQ p1

stat~Q!

3S F ]

]Q
V~Q!G•QD TJ . ~4.5!

The second of the two terms on the right hand side stems
from the fluctuation term, and is therefore an immediate con-
sequence of the Gaussian approximation. It is not present in
the preaveraging and the consistent averaging procedure,
both of which give the same viscosity when calculated by
means of~4.5!. The additional first order fluctuation term in
Eq. ~4.5! changes the viscosity for the Gaussian approxima-
tion @16#. This discrepancy can also be observed when using
an equivalent procedure; that is, when solving the closed
second moment equations in all three cases in the presence of
flow and usinghp(ġ)5npH^QxQy&/ġ to calculate the vis-
cosity.

One may consider~4.5! as a generalization of the Green-
Kubo formula for the viscosity to the Gaussian approxima-
tion. One has to remember, however, that this Green-Kubo
formula does not give a representation of a transport coeffi-
cient in purely equilibrium dynamical terms. If one is inter-
ested in the determination of the zero-shear-rate viscosity,
one is forced to calculate at least one first order quantity and
can only choose which one is preferable, the shear stress or
the fluctuation term.

Because the formulation of the Gaussian approximation
for stochastic processes is not unique, one can try to find a
process that fulfills the Green-Kubo relation in the usual
form, i.e., Eq.~4.5!, without the fluctuation term. We were
able to establish such a solution for dumbbells but not for
longer chains.

V. CONCLUSIONS

The previous two examples have shown that the applica-
tion of mean-field approximations can have two distinct ef-
fects on Green-Kubo relations. Either the relation experi-
ences only minor formal changes, with mostly the
interpretation of the transport coefficient being modified, as
shown in the Vlasov example, or the relation has to be gen-
eralized in order not to change the meaning of the transport
coefficient. This has been observed in the polymer solution
model. We therefore conclude that the commonly known
Green-Kubo relations, which say that the space~-time! inte-
gral of the flux-flux equilibrium correlation function divided
by kBT gives the corresponding steady-state transport coef-
ficient, cannot be blindly applied when mean-field approxi-
mations are involved. Since the above examples have shown
that no easy recipe for the derivation of Green-Kubo rela-
tions can be given, it seems to be necessary to derive the
modified Green-Kubo relation separately for each problem
considered, starting from Eq.~3.5! or ~3.6!.
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2530 54MARKUS HÜTTER AND HANS CHRISTIAN ÖTTINGER


